Modeling Instruction in AP Physics C: Mechanics and Electricity and Magnetism

Nathan Belcher

Abstract

This action research study used data from multiple assessments in Mechanics and Electricity and Magnetism to determine the viability of Modeling Instruction as a pedagogy for students in AP Physics C: Mechanics and Electricity and Magnetism. Modeling Instruction is a guided-inquiry approach to teaching science in which students progress through the Modeling Cycle to develop a fully-constructed model for a scientific concept. AP Physics C: Mechanics and Electricity and Magnetism are calculus-based physics courses, approximately equivalent to first-year calculus-based physics courses at the collegiate level. Using a one-group pretest-posttest design, students were assessed in Mechanics using the Force Concept Inventory, Mechanics Baseline Test, and 2015 AP Physics C: Mechanics Practice Exam. With the same design, students were assessed in Electricity and Magnetism on the Brief Electricity and Magnetism Assessment, Electricity and Magnetism Conceptual Assessment, and 2015 AP Physics C: Electricity and Magnetism Practice Exam. In a one-shot case study design, student scores were collected from the 2017 AP Physics C: Mechanics and Electricity and Magnetism Exams. Students performed moderately well on the assessments in Mechanics and Electricity and Magnetism, demonstrating that Modeling Instruction is a viable pedagogy in AP Physics C: Electricity and Magnetism.

Keywords: Modeling Instruction, AP Physics C, action research